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We discuss a new class of approaches for simulating
multiscale kinetic problems, with particular emphasis
on applications related to small-scale transport.
These approaches are based on a decomposition
of the kinetic description into an equilibrium part,
which is described deterministically (analytically or
numerically), and the remainder, which is described
using a particle simulation method. We show that it
is possible to derive evolution equations for the two
parts from the governing kinetic equation, leading to a
decomposition that is dynamically and automatically
adaptive, and a multiscale method that seamlessly
bridges the two descriptions without introducing
any approximation. Our discussion pays particular
attention to stochastic particle simulation methods
that are typically used to simulate kinetic phenomena;
in this context, these decomposition approaches can
be thought of as control-variate variance-reduction
formulations, with the nearby equilibrium serving as
the control. Such formulations can provide substantial
computational benefits in a broad spectrum of
applications because a number of transport processes
and phenomena of practical interest correspond to
perturbations from nearby equilibrium distributions.
In many cases, the computational cost reduc-
tion is sufficiently large to enable otherwise
intractable simulations.

1. Introduction
Computational methods that can efficiently but also
accurately capture a wide range of length and time
scales remain highly desirable and are the subject
of considerable research effort. In the area of kinetic
transport, multiscale problems are common in micro- and
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nanoscale gas dynamics [1], plasma physics [2], micro- and nanoscale solid-state heat transfer
as mediated by phonon transport [3], electron transport [4,5] and neutron transport [6,7]. The
primary challenge associated with such problems stems from the computational cost associated
with capturing dynamics occurring over a wide range of scales.

One typical example of such problems is thermal response to laser irradiation: the impulsive
nature of laser heating means that at early times (compared with the mean time between collisions
associated with the carrier) transport is ballistic [8,9]; only at late times the Fourier description
becomes appropriate. During the ballistic and transition [1] regimes, a kinetic description is
necessary; on the other hand, a kinetic description of this problem for macroscopic times is
typically intractable. Multiscale methods aim to provide means for solving such problems without
introducing approximations; instead, they seek to combine a number of different descriptions into
a formulation that is globally consistent and more computationally efficient than simulation of the
problem at the highest level of fidelity (which is often intractable).

Multiscale problems abound in science and engineering. Reviewing methods and applications
in this general context is a truly daunting task. For this reason, our discussion in this paper
focuses on methods applicable to the primary topic of this review, namely kinetic transport.
Moreover, in order to simplify the discussion, technical details will be presented in the context
of dilute gases which have been the subject of a considerable part of recent method development
efforts. The more general validity of the ideas presented and discussed here is demonstrated in
§5b(ii), where their application to nanoscale solid-state heat transfer as mediated by phonons
is discussed.

(a) Background
Phenomena involving kinetic transport but in which a limiting description (e.g. a set of continuum
equations with Navier–Stokes closure1) may be used in part of the computational domain
can be treated using hybrid atomistic-continuum methods [10–13]. These methods minimize
the computational cost by using the kinetic description only in regions where it is needed,
while the remainder of the computational domain is treated by the less expensive continuum
description. In addition to a clear spatial separation of kinetic and continuum regions, these
methods assume that the region where kinetic effects are important is sufficiently small that
the kinetic part of the calculation is feasible. These formulations typically employ domain
decomposition techniques [14] to separate the two regions in question and thus coupling of the
two descriptions becomes central to the success of the method [15]. In this context, a region where
the two descriptions are simultaneously valid—for matching to take place—is required; criteria
for transition from one description to the other [12,16] are also necessary. Fortunately, continuum
descriptions of kinetic systems are typically well characterized—e.g. in a dilute gas, the molecular
distribution function is given by the Chapman–Enskog result in the Navier–Stokes (diffuse
transport) limit [17–19]—and thus rigorous matching of the two descriptions is possible [12].
This has led to the development of fairly sophisticated hybrid simulation methods [12,13,20] in
which the transition from one description to the other is automatic and, in some cases, seamlessly
integrated within a mesh refinement process. The situation is not entirely resolved in the case of
dense fluids [14,15,21] and solids [22] where the molecular distribution function corresponding to
the continuum limit is not known, and thus constructing a microscopic (e.g. molecular) state that
exactly corresponds to the continuum solution in the matching region is not rigorously possible
yet [15].

1In the literature, it is customary to refer to the Navier–Stokes system of equations as the continuum description, despite the
fact that continuum conservation laws, sometimes with other closures, can still be written when the Navier–Stokes closure is
not valid. Owing to the long historical precedent, we will also use the term continuum to refer to the Navier–Stokes (more
generally, diffusive transport) description valid in the macroscopic limit.
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Projective integration [23] also relies on a clear separation of scales. In this method, a
microscopic (molecular) description is simulated for a small amount of time, and based on
this simulation, the coarse dynamical behaviour can be extracted (e.g. through an eigenvalue
analysis) and projected forward in time using timesteps appropriate for a numerical solver of the
coarse, macroscopic, description. In direct analogy, one can perform homogeneous simulations
of a microscopic description in small, suitably terminated, regions of space (e.g. located at the
nodes of a macroscopic numerical solver) thus obtaining local closure (constitutive) information
which informs a numerical solution of the macroscopic set of conservation equations [23–25].
The above approaches are strictly valid (and worthwhile) when a clear separation between the
microscopic and macroscopic time scales and length scales, respectively, exists; under these
conditions, treatment of the inner model in a local and/or quasistatic fashion is justified.
Examples include formulations that require steady solutions from the microscopic solver (e.g.
for steady problems), where the error owing to imprecise initialization of the microscopic
solver may be avoided. Another example is the special case of kinetic problems in which only
initialization of microscopic states corresponding to continuum fields is necessary; in such cases,
the existence of Chapman–Enskog-type results [3,17–19] which provide analytical descriptions
for the distribution function makes this rigorously possible, as in the case of hybrid Navier–
Stokes/kinetic domain-decomposition-based methods discussed above, where coupling happens
in a region where both descriptions are valid (see [11,12] for an example). Unfortunately,
in the general (and most practically relevant) case where the distribution function is not
known analytically, ad hoc initialization and domain termination introduces approximation error
[26,27] which is expected to corrupt the closure information subsequently extracted from the
microscopic solver.

For a large class of problems of practical interest, the separation of scales is not sufficiently
large to justify the approaches described above. In such cases, methods which go beyond spatial
decomposition or assumptions of local and/or quasistatic behaviour are needed. The approach
reviewed in this paper instead relies on an algebraic decomposition of the distribution function.
This approach, introduced in §3, is viable because, for kinetic problems, the governing equation
is typically sufficiently tractable to allow rigorous descriptions of the evolution of the constituent
parts into which the distribution function is decomposed.

The resulting methods are powerful and exhibit a number of desirable features. Let us consider
the approach to the Navier–Stokes limit as an example, where it is well known [17] that the
distribution can be decomposed into a (local) equilibrium distribution and a (small) correction
which describes deviations therefrom. In contrast to standard particle simulation methods, which
become increasingly more expensive as this limit is approached (larger length scales imply not
only more simulation particles, but also longer evolution time scales), a formulation comprising
an equilibrium part and a part simulated by particles becomes more efficient as this limit is
approached, because it is able to relegate increasingly more of the description to the equilibrium
part, thus reducing the number of particles required for the simulation. As we show in §5,
such decompositions can also be thought of as variance reduction techniques, which result in
simulation methods that exhibit significantly reduced statistical uncertainty [28] compared with
traditional particle simulation methods.

We begin our review with an introduction to kinetic transport descriptions and typical
methods of simulation.

2. Boltzmann equation
We consider kinetic transport as described by the Boltzmann equation in the absence of external
fields, which can be written in the form

∂f
∂t

+ c · ∂f
∂r

=
[

df
dt

]
coll

, (2.1)
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where f (r, c, t) is the velocity distribution function [17], r = (x, y, z) is the position vector in physical
space, c = (cx, cy, cz) is the molecular velocity vector, t is time and [df/dt]coll denotes the collision
operator which takes different forms depending on the carrier modelled. Extension of this work
to include external fields does not present any additional conceptual challenges.

The original Boltzmann collision operator was written for a hard-sphere gas [17] in the form[
df
dt

]
coll

(r, c, t) =
∫
R3

∫
S2

[f ′
1 f ′ − f1 f ] ||c − c1||σ d2Ωd3c1, (2.2)

where d̂ is the gas-molecule effective diameter, σ = d̂2/4 is the differential collision cross-section
for hard spheres and f ′ = f (r, c′, t), f1 = f (r, c1, t), f ′

1 = f (r, c′
1, t); here, {c1, c} are the pre-collision

velocities and {c′
1, c′} are the post-collision velocities, related to the pre-collision velocities through

the scattering angle Ω . Integration in velocity space extends over all possible velocities, and the
solid angle is integrated over the surface of the unit sphere (S2).

The global equilibrium distribution

f 0(c) = n0

π3/2c3
0

exp

(
− c2

c2
0

)
(2.3)

for a gas at (constant) reference temperature T0 and number density n0 is a special case of a
Maxwell–Boltzmann distribution

f MB(r, c, t) = nMB

π3/2c3
MB

exp

(
−||c − uMB||2

c2
MB

)
, (2.4)

where in the latter uMB = uMB(r, t), cMB(r, t) = √
2RTMB(r, t), TMB = TMB(r, t) and nMB = nMB(r, t).

A gas described by (2.3) has a mean free path λ = 1/(
√

2πn0d̂2), while the molecular collision
time is given by τcoll = √

πλ/(2c0), where c0 = √
2RT0 is the most probable molecular speed,

R = kb/m is the gas constant, kb is Boltzmann’s constant and m is the molecular mass. Based
on these quantities, we can define a Knudsen number Kn = λ/L, where L is the characteristic
hydrodynamic length scale.

The hard-sphere operator predicts transport coefficients that vary with temperature according
to T1/2, while real gases exhibit a more general temperature dependence T� , where the
temperature coefficient (� ) is typically closer to 3

4 . For this reason, the variable hard sphere
(VHS) model [29] has been developed. This model, which finds wide application in engineering
studies, achieves the desired temperature dependence (T� ) by introducing a velocity-dependent
collision cross-section into the Boltzmann operator (2.2) through a hard-sphere cross-section with
a velocity-dependent diameter d̂ = d̂r,ref(cr,ref/||c − c1||)�−1/2, where cr,ref = 4

√
RTref/π and d̂r,ref

is the reference diameter at temperature Tref.
Owing to the complexity associated with the above collision operators, simpler

approximations have been proposed. The most well known, perhaps, is the Bhatnagar–Gross–
Krook (BGK) model [17] [

df
dt

]
coll

(r, c, t) = f loc − f
τ

(2.5)

which, by construction, retains (2.3) as the global equilibrium distribution and also preserves
mass, momentum and energy conservation (collisional invariants) [17]. This model has also
found widespread application in many areas of physics where it is frequently used to model
the transport of electrons [4,5], photons [18] and phonons [30], and is more generally referred to
as the relaxation-time approximation. In this model, τ is the relaxation time and f loc is the local
equilibrium distribution; for a dilute gas, the latter is of the Maxwell–Boltzmann form

f loc(r, c, t) = nloc

π3/2c3
loc

exp

(
−||c − uloc||2

c2
loc

)
, (2.6)
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where

nloc = nloc(r, t) =
∫
R3

f d3c (2.7)

is the local gas number density,

uloc = uloc(r, t) = 1
nloc

∫
R3

cf d3c (2.8)

denotes the local flow velocity, and cloc(r, t) =√
2RTloc(r, t), where

Tloc = Tloc(r, t) = 1
3nlocR

∫
R3

||c − uloc||2f d3c (2.9)

is the local gas temperature. The molecular mean free path associated with the BGK gas is given
by λ = 2c0τ/

√
π .

(a) Particle methods for solving the Boltzmann equation
Owing to the high dimensionality associated with f (r, c, t), as well as the need to accurately
and stably capture the propagation of travelling discontinuities in the distribution function [31],
particle methods are generally the method of choice for solving the Boltzmann equation [32].
The most prevalent Boltzmann solution method is a particle method known as direct simulation
Monte Carlo (DSMC) [29], which in addition to satisfying the above requirements, combines
simplicity with an intuitive formulation which naturally employs importance sampling, and very
low memory usage.

DSMC solves [33] the Boltzmann equation by simulating molecular motion as a series of
timesteps, each of length �t (� λ/c0) [33,34], and during which collisionless advection and
collision substeps are performed [29]. This can be thought of as a splitting scheme in which the
collisionless advection substep integrates

∂f
∂t

+ c · ∂f
∂r

= 0 (2.10)

while the collision substep integrates

∂f
∂t

=
[

df
dt

]
coll

(r, c, t). (2.11)

During the advection substep, the positions of all particles are updated according to their
velocities. During the collision substep, the distribution function is updated by processing binary
collisions between collision partners chosen from the same computational cell of size �x (� λ)

[33,35] using an acceptance–rejection procedure [36]. This splitting procedure leads to a second-
order accurate in time algorithm provided the latter is appropriately symmetrized [34,37]. DSMC
is also second-order accurate in space [35,37]. Detailed descriptions of the DSMC algorithm can
be found in [36].

3. The Chapman–Enskog expansion
The Navier–Stokes limit can be recovered from the Boltzmann equation through the celebrated
Chapman–Enskog procedure, which seeks to expand the distribution in a power series of the
Knudsen number Kn. The essential result of this procedure is the expansion [18]

f (r, c, t) = f loc(r, c, t) + Kn · h(r, c, t) + O(Kn2), (3.1)

where the first term in the expansion is the local equilibrium which gives rise to the Euler set
of hydrodynamic equations (no diffusive transport); keeping terms up to and including O(Kn)

recovers the Navier–Stokes set of equations [18] (diffusive, linear-gradient transport). More
details, as well as a complete mathematical treatment of the hard-sphere collision operator (2.2),
can be found in [19]; a less detailed exposition can be found in [18].

 on September 14, 2015http://rsta.royalsocietypublishing.org/Downloaded from 

http://rsta.royalsocietypublishing.org/


6

rsta.royalsocietypublishing.org
PhilTransRSocA371:20120182

......................................................

4. Algebraic decomposition based on the Chapman–Enskog expansion
The Chapman–Enskog result (3.1) provides a natural framework for reducing the computational
cost associated with approaching the Kn � 1 limit with particle simulations. Specifically, the
algebraic decomposition

f (r, c, t) = f loc(r, c, t) + g(r, c, t) (4.1)

motivates a simulation scheme in which a particle method is used to simulate g(r, c, t) and a
method more suited to the characteristics of f loc(r, c, t) is used to capture the evolution of the
latter [38]. In fact, because [

df loc

dt

]
coll

= 0, (4.2)

the latter method only needs to update f loc by only considering its advection (2.10). In contrast
to traditional particle methods which become stiff in the Kn � 1 limit, methods based on this
decomposition should, in theory, relegate increasingly more of the description to f loc(r, c, t) as
Kn → 0 (since g(r, c, t) → 0) and require a smaller number of particles in this limit.

Unfortunately, decomposition (4.1) is no longer preserved by the advection operator. This can
be illustrated by considering the form of the distribution function

f (r, c, t + �t) = f loc(r − c�t, c, t) + g(r − c�t, c, t) (4.3)

following the action of (2.10) over a timestep �t. In general, f loc(r − c�t, c, t) is not a Maxwell–
Boltzmann distribution and thus f loc(r − c�t, c, t) �= f loc(r, c, t + �t). This implies that a scheme
based on (4.1) will, in general, require some form of reconstruction process that restores

f loc(r − c�t, c, t) + g(r − c�t, c, t) → f loc(r, c, t + �t) + g(r, c, t + �t) (4.4)

after every time the advection operator is applied (e.g. every timestep). Perhaps the simplest
approach would be to generate particles by sampling f loc(r − c�t, c, t) − f loc(r, c, t + �t) and
add them to the particles which represent the distribution g(r − c�t, c, t). This requires
the generalization [39] of the particle description by including negative particles, since
f loc(r − c�t, c, t) − f loc(r, c, t + �t) will, in general, be of indeterminate sign. Such approaches are
discussed in §§5 and 6; in the next section, we discuss a number of approaches [38,40,41] where the
decomposition (4.1) is instead constrained to be a convex combination of two positive functions.

(a) Applications
In one class of approaches aimed at problems in the Kn � 1 limit [38,40,41], decomposition (4.1)
is constrained to be of the form

f (r, c, t) = w(r, c, t)f loc(r, c, t) + g(r, c, t), g(r, c, t) ≥ 0 (4.5)

with w(r, c, t) ∈ [0, 1] determining the ‘fraction’ of the equilibrium distribution f loc to be ‘separated
out’. The existence of w is a result of the requirement that g(r, c, t) ≥ 0, which allows the latter to
be straightforwardly interpreted as a probability density of positive particles, but means that, in
general, g(r, c, t) �= Kn · h(r, c, t) + O(Kn2), i.e. the existence of a local equilibrium distribution is not
fully taken advantage of. On the other hand, in the Kn → 0 limit, the correct limiting distribution
is recovered (w → 1 and f → f loc).

A number of implementations of this procedure have been reported. In [38], spatially
homogeneous relaxation problems were considered. In [40,41], one-dimensional shock problems
were studied. As discussed above, in spatially dependent problems, the advection operator does
not preserve the form of (4.5), but instead produces

f (r, c, t + �t) = w(r − c�t, c, t)f loc(r − c�t, c, t) + g(r − c�t, c, t) (4.6)
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which requires some form of reconstruction. Reconstruction schemes are first discussed in [38],
where it is proposed to convert w(r − c�t, c, t)f loc(r − c�t, c, t) into particles and add those to the
population representing g(r − c�t, c, t)—in other words, create an intermediate representation
with w = 0. From this intermediate representation, w(r, c, t + �t) and f loc(r, c, t + �t) can be
determined using a number of approaches, the most direct of which would be to sample the
particle population (measure its moments) to determine the parameters of f loc(r, c, t + �t).

In [40], both components of f , namely w(r, c, t)f loc(r, c, t) and g(r, c, t), are simulated by
particles. The algorithm for advecting w(r, c, t)f loc(r, c, t) is found to be ‘somewhat clumsy’ [40];
it is proposed that a Navier–Stokes-based approach for the advection step of w(r, c, t)f loc(r, c, t)
is preferable. Various approaches using a numerical (e.g. finite volume) solver to perform
the advection step of w(r, c, t)f loc(r, c, t) are presented in [41,42], where also a number of
reconstruction schemes are discussed and evaluated. Results demonstrate accurate simulation
of shockwave propagation in the range 10−5 ≤ Kn ≤ 10−1.

In these studies, algebraic decomposition is coupled to a time-relaxed [43] time-integration
scheme which removes the stiffness associated with time integration of (2.11) in the Kn → 0 limit.
The time-relaxed scheme uses the formal representation of the solution to (2.11) in the form
of an infinite Wild expansion [44] to emulate an implicit integration method, which is stable
for all timestep sizes, and approaches the correct limiting distribution (f loc(r, c, t)) for �t → ∞;
however, complexity considerations limited implementations to a first-order scheme, obtained
by approximating the high-order terms in the expansion by a Maxwellian distribution [38], which
amounts to thermalizing particles that have had more than a single collision. More recently,
higher-order schemes for the VHS model have been presented [45], but not implemented within
an algebraic decomposition framework.

5. Algebraic decomposition and variance reduction
The property [

df MB

dt

]
coll

= 0, (5.1)

where f MB is any Maxwellian distribution, means that this distribution plays a central role in
kinetic problems, even away from the Kn � 1 limit. It is particularly useful in cases where the
deviation from a well-defined equilibrium state is small. In such cases, it can be used [46,47] for
obtaining solutions to the Boltzmann equation; the solution proceeds by linearizing the governing
equation and boundary conditions about the reference state f 0(c), resulting in a linear problem in
terms of the deviation from equilibrium, f d(r, c, t), defined by

f (r, c, t) = f 0(c) + f d(r, c, t). (5.2)

Small deviation from equilibrium typically implies [46] that the variation of local conditions
throughout the domain remains sufficiently small that f 0 may be based on any convenient
(but physically relevant) reference properties (e.g. uniform initial condition if applicable, system
average properties, etc).

In the interest of brevity, we will denote small deviation from equilibrium by ε � 1, where ε is
a problem-dependent measure of the departure from equilibrium which usually can be taken to
be the Mach number Ma (=√

2/γ U/c0) or a dimensionless temperature difference �T/T0, where
U is the characteristic flow speed, �T is a characteristic temperature difference, and γ is the ratio
of specific heats (= 5

3 for a monoatomic gas).
We emphasize here that a small f d does not require Kn � 1. We can see this by noticing that

ε � 1 does not involve a length scale restriction. For example, in the case of gas flow, the von-
Karman relation Ma ≈ Re Kn implies that the Mach number can be small for Kn  1, provided the
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Reynolds number Re is sufficiently small, which can be realized when the characteristic length
scale L is sufficiently small. Here, Re = ρUL/μ, where μ is the gas viscosity and ρ (= mn) is the
gas density.

(a) Variance reduction
Decomposition (5.2) can be used [28] for reducing the statistical uncertainty of direct Monte
Carlo simulations of the Boltzmann equation by describing part of the solution, namely f 0(c),
deterministically. The need for this arises because modern applications associated with nanoscale
science and engineering typically involve small deviations from equilibrium [1,47], which
translates to small hydrodynamic signals (e.g. flow velocity, heat flux, etc.). In this limit, DSMC, as
well as all molecular methods [48], become very expensive because resolution of the hydrodynamic
signals requires very large numbers of samples. Specifically, in the limit of small deviation from
equilibrium, statistical fluctuations are dominated by the equilibrium spectrum (which can be
quantified using equilibrium statistical mechanics [48]) that does not depend on ε and makes
resolution of smaller signals increasingly difficult [48].

Decomposition (5.2) lends itself to a control variate approach for reducing the statistical
uncertainty of Monte Carlo integration. In control variate Monte Carlo integration, we write

∫
R3

W(c)f (c) d3c =
∫
R3

W(c)[f (c) − ξ(c)] d3c +
∫
R3

W(c)ξ(c) d3c, (5.3)

where the function ξ(c) fulfils the following requirements:

— captures most of the variation of f (c) (i.e. ξ(c) ≈ f (c)) and
—

∫
R3 W(c)ξ(c)d3c can be deterministically (analytically or otherwise) evaluated.

Using a Monte Carlo method to evaluate only the term
∫
R3 W(c)[f (c) − ξ(c)]d3c results in

significantly reduced statistical uncertainty, because most of the statistical uncertainty is removed
through the deterministic evaluation of

∫
R3 W(c)ξ(c) d3c [49].

As stated above, decomposition (5.2) lends itself naturally to control variate integration, since
it clearly identifies a control ξ = f 0 that is guaranteed to satisfy the above requirements ((1) f 0 ≈ f
and (2) equilibrium moments are easy to calculate deterministically, if not intuitively obvious);
moreover, it has a number of desirable attributes which alleviate the limitations arising from using
a time-dependent equilibrium distribution (4.1), discussed in §4. Specifically, since f 0 does not
vary in time, it does not need to be evolved by any ‘auxiliary’ numerical method, nor does it need
to be reconstructed every timestep.

A simulation method using the above construct reduces to a method for simulating the
dynamics of the deviation from equilibrium f d = f − f 0; such a method has been developed
[32,50–52] and is referred to as low-variance deviational simulation Monte Carlo (LVDSMC),
which highlights its connection to DSMC to which it is related. LVDSMC proceeds in time using
the standard splitting scheme (2.10) and (2.11) on the ‘deviational population’ of signed particles
(i.e. positive or negative) sampling f d. Specifically, it follows directly from (2.10) and (5.2) that

∂f d

∂t
+ c · ∂f d

∂r
= 0, (5.4)

and thus the motion of deviational particles is identical to that of physical particles. The effect of
collisions is implemented by interpreting the collision integral in terms of source and sink terms[

df
dt

]
coll

=
[

df d

dt

]
coll

= f loc − f 0

τ︸ ︷︷ ︸
generation

− f d

τ︸︷︷︸
deletion

, (5.5)

which modify the distribution by generating signed particles (with sign sgn(f loc − f 0)) from the
distribution |f loc − f 0| and deleting particles from the deviational distribution.
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Figure 1. The relative statistical uncertainty in temperature,σT/�T , as a function of�T/T0,with T0 = 273 K, for steady-state
heat exchange between two fully accommodating parallel plates at different temperatures a distance L= √

πλ/2 apart. BGK
simulation results (symbols with error bars on solid line) are presented and compared with the theoretical prediction [48] for
DSMC (dashed line), which serves as a canonical case of a ‘non-deviational’ method. Triangles show actual DSMC (BGK) results
verifying that equilibrium theory is reliable up to at least�T ≈ 0.3T0.

In the interest of simplicity, the above discussion considered the BGK model with a constant
relaxation time; more details for this implementation can be found in [51]. An example
with a variable relaxation time is discussed in §5b(ii). The hard-sphere case was first treated
in [32], while recently, collision algorithms with no timestep error for the more general
VHS model were developed [53] and implemented [52]. A discussion of stability problems
associated with integrating [df d/dt]coll by extending DSMC collisional processes, rather than
the generation/deletion interpretation discussed above, can be found in [32,39]. Applications to
microscale transport problems are discussed in §5b.

An interesting feature of these algorithms is that by removing the fluctuations associated with
equilibrium, the resulting methods exhibit statistical uncertainty which is proportional to the
non-equilibrium signal. In other words, the relative statistical uncertainty (standard deviation
in the signal over the signal characteristic magnitude) is independent of the signal magnitude;
this means that these methods can resolve, at a constant relative statistical uncertainty, arbitrarily
small deviations from equilibrium at a cost that does not increase as the signal decreases. This
is demonstrated in figure 1, which shows the relative statistical uncertainty, σT/�T, in the case
of heat transfer between two parallel plates at temperatures T and T + �T, respectively, as a
function of �T [51]; in the figure, σT is the standard deviation in the temperature estimate. The
figure also shows the relative statistical uncertainty for DSMC, which grows as �T decreases,
since in that case σT is dominated by the equilibrium fluctuations [48,51] (and is thus a constant).
We note that the theoretical speedup scales as the square of the ratio of the two relative
statistical uncertainties.

(b) Applications
Below, we review a few examples that illustrate the computational savings of variance-reduced
computational approaches based on algebraic decomposition of the distribution function.
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Figure 2. LVDSMC simulation of a simple Knudsen compressor with Kn= 1 and arbitrarily small temperature gradients. The
arrows are velocity vectors and the contours are isothermal lines. (Online version in colour.)

(i) Simulation of Knudsen compressors

Figure 2 shows an LVDSMC simulation of thermal transpiration flow of a hard-sphere gas [52]
through a single stage of a Knudsen compressor at a Knudsen number Kn = λ/L = 1; the lower
boundary is diffusely reflecting with a temperature (Tw) given by

Tw − T0

�T
=

⎧⎪⎪⎨
⎪⎪⎩

2
( x

L

)
− 1 for x < L,

3 − 2
( x

L

)
for x > L,

while the upper boundary is specularly reflecting, imposing a symmetry boundary condition. The
system is periodic in the axial (flow) direction (T(x, y) = T(x + 2L, y), etc.).

Knudsen compressors are devices with no moving parts, which exploit the kinetic
phenomenon of thermal transpiration—the tendency of a rarefied (Kn > 0) gas in contact with
a wall along which a temperature gradient exists to move from cold regions to hot regions
[46]—to pump or compress a gas and more recently to separate gases [54]. These devices
generally consist of many stages, each with a capillary section (x < L in the figure) with a
positive streamwise temperature gradient, followed by a connector section (x > L in the figure)
with a negative temperature gradient. Simulation of these devices is challenging because of the
high cost associated with obtaining noise-free results for representative (moderate) temperature
differences [55]. LVDSMC overcomes this limitation by simulating only the deviation from
equilibrium.

(ii) Phonon transport for microscale heat transfer

Applications of the methods discussed above can also be found in the field of microscale solid-
state heat transfer. Heat carriers (phonons) feature a mix of ballistic and diffusive behaviour at
scales comparable to the phonon mean free path (O(100 nm) for Si at 300 K), which manifests
itself through the breakdown of Fourier’s law. In spite of the conceptual and physical differences
between molecular gases and so-called phonon gases (Bose–Einstein distribution, existence of a
dispersion relation, frequency dependent scattering rate, etc.), direct Monte Carlo simulations are
widely used to solve phonon transport problems [56–60]. Practical applications of such problems
are drawn from thermoelectrics, manufacturing, design and cooling of microelectronic devices,
and more generally from any application involving microscale solid-state thermal management.
Recent applications typically involve small temperature differences, making variance reduction
very useful.
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At an equilibrium state with temperature T, phonons follow Bose–Einstein statistics leading to
an equilibrium distribution given by

f̂ eq
T (ω) = 1

exp(h̄ω/kbT) − 1
. (5.6)

Non-equilibrium transport of phonons is well approximated by a Boltzmann transport equation
(BTE) that is very similar to the BGK model presented in §2; however, in the phonon case, the
distribution function f̂ = f̂ (r, k, t, p) represents the occupation number of the energy levels and is
a function of space, the phonon wavevector (k), time and polarization p; the main polarizations
for three-dimensional crystals are longitudinal acoustic, transverse acoustic, longitudinal optical
and transverse optical [3]. Although phonon wave vectors are quantized, the energy levels can be
treated as a quasi-continuum by introducing the density of states which accounts for degeneracies
of energy levels and therefore allows sums over k to be transformed into integrals. Owing to the
presence of a dispersion relation that is typically of the form ω = ω(k, p), where ω is the phonon
angular frequency and k = |k|, it is usually more convenient to use f̂ = f̂ (r, ω, Ω , t, p) where Ω

is the solid angle associated with the representation of k in spherical coordinates. The density
of states D(ω, p) then allows one to write f̂ (r, k, t, p)d3k/(2π)3 = D(ω, p)f̂ (r, ω, Ω , t, p) dω dΩ/(4π).
The resulting Boltzmann equation reads

∂ f̂
∂t

+ vg · ∂ f̂
∂r

= f̂ loc − f̂
τ

, (5.7)

where vg = vg(ω, p) is the phonon group velocity, τ = τ(ω, p, Tloc) is the relaxation time and Tloc is
the (local) temperature defined through the implicit relation

∫
S2

∫ωmax

ω=0

∑
p

h̄ω
D(ω, p)

4π
f̂ dω dΩ =

∫ωmax

ω=0

∑
p

h̄ωD(ω, p)f̂ eq
Tloc

dω. (5.8)

In contrast to the BGK model (see §2), here the scattering rate depends on frequency and
on temperature. As a result, the local equilibrium distribution f̂ loc in the collision term is
evaluated [17,60] at the pseudo-local temperature T̃ (i.e. f̂ loc = f̂ eq

T̃
), which ensures that energy

is conserved during scattering, namely

∫
S2

∫ωmax

ω=0

∑
p

h̄ωD(ω, p)f̂
4πτ(ω, p, Tloc)

dω dΩ =
∫ωmax

ω=0

∑
p

h̄ωD(ω, p)f̂ eq
T̃

τ(ω, p, Tloc)
dω. (5.9)

Given that the only conserved quantity during scattering is energy, it is preferable [61,62] to
multiply the BTE (5.7) by h̄ω (energy of a phonon) and to consider particles that simulate phonon
bundles with fixed energy. Using this approach, energy conservation is automatically ensured if
we conserve the number of computational particles, whereas in previous formulations [58,59], a
phonon deletion/creation process was required.

Variance reduction can again be achieved by considering the difference between the actual
distribution and an appropriate nearby equilibrium described by f̂ 0 = f̂ eq

T0
. The equation obeyed

by the difference f̂ d = f̂ − f̂ 0 can be readily written down as

∂ h̄ωDf̂ d

∂t
+ vg · ∂ h̄ωDf̂ d

∂r
= h̄ωD(f̂ loc − f̂ 0)

τ
− h̄ωDf̂ d

τ
(5.10)

and deviational particles can be used to simulate it. In this case, particles representing the
distribution h̄ωDf̂ d are deleted at a frequency-dependent rate τ(ω, p, Tloc)

−1, while particles of
sign sgn(f̂ loc − f̂ 0) are generated from the distribution |h̄ωD(f̂ loc − f̂ 0)|/τ .

As discussed in §5a, this formulation removes the statistical uncertainty associated with
equilibrium fluctuations which can become prohibitive when the deviation from equilibrium is
small. An additional advantage of this formulation manifests itself in problems where a large
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Figure 3. System composed of a 50 nm slab of aluminium on a semi-infinite silicon substrate. At t = 0, a laser pulse induces a
small and localized rise in the temperature at the top surface. The subsequent evolution of the temperature field is computed by
assuming the top surface to be adiabatic and that the Al–Si interface obeys the diffuse mismatch model [63]. The figure shows
the resulting temperature field at three different times. (Online version in colour.)

fraction of the computational domain remains in equilibrium, such as the transient problem
discussed briefly below and shown in figure 3. In this problem, a thin slab of crystalline material,
initially at uniform temperature and resting on a silicon substrate, is subjected to a localized
heating by a laser source. As a result of the localized heating, large parts of the computational
domain are in thermal equilibrium, especially for early times. Algebraic decomposition enables
the use of particles only in regions where f̂ d �= 0, thus significantly reducing the computational
cost compared with the standard approach.

Figure 3 shows three snapshots of the temperature field solution of the laser heating
problem discussed above obtained using the variance-reduced method. More details on the
problem formulation and simulation method can be found in [62]. Despite the very small signal
(temperature differences are typically much smaller than 1 K and of the order of 10−3 K at late
times), the time-dependent temperature field is resolved to very small statistical uncertainty. The
computational savings compared with a standard Monte Carlo simulation method have been
estimated [62] to be of the order of 109. In other words, simulation of this problem (at the same
statistical uncertainty) is infeasible using traditional methods with our present computational
resources.

6. Variance reduction using a local equilibrium
As shown in §5, a deviational algorithm based on a global equilibrium distribution provides
significant acceleration in the form of variance reduction for ε � 1, but also computational savings
in cases where part of the simulation domain is in equilibrium. Moreover, this algorithm is
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reasonably simple and does not require methods for evolving or reconstructing f 0. However,
although as ε → 0 the variance reduction improves (see also figure 1), the variance reduction
does not improve as Kn → 0 (for a constant ε) because in this limit f d = f − f 0 → f loc − f 0 ∼ ε. In
other words, in the Kn → 0 limit, the degree of variance reduction can further be improved using
the decomposition

f (r, c, t) = f MB(r, c) + f d(r, c, t), (6.1)

where f MB varies in space. We note, however, that f MB �= f MB(t) and thus no fluid-dynamic solver is
required for its evolution.

The seemingly impossible task of approximating f loc(t) by f MB(r, c) �= f MB(t) can be
achieved [32] by updating f MB once every timestep (e.g. before the start of a new timestep). In
other words, after every timestep, the update seeks to find a new f MB

t+�t ≈ f loc(t + �t) without
trying to construct the complete distribution from its samples, in contrast to the approach of
§4a. This ‘change of basis’ can be achieved [32] by introducing a change �f MB = f MB

t+�t − f MB
t ≈

f loc(t + �t) − f loc(t) such that at time t + �t decomposition (6.1) is given by

f (r, c, t + �t) = f MB(r, c) + �f MB(r, c) + f d(r, c, t + �t) − �f MB(r, c) (6.2)

= f MB
t+�t(r, c) + f d(r, c, t + �t) − �f MB(r, c), (6.3)

where

�f MB ≈
[

�nMB

nMB
+ 2ζ · �uMB

cMB
+ (2ζ 2 − 3)

�cMB

cMB

]
f MB (6.4)

and ζ = (c − uMB)/cMB. Once the parameters �nMB, �uMB, �cMB are determined, the change
of basis can proceed (f MB

t+�t = f MB
t + �f MB); at the same time, deviational particles that sample

−�f MB need to be generated and added to the f d population.
It was shown in [32,50] that it is best to combine this step with the particle generation step of

the collision algorithm, which for the BGK model can be summarized as[
df
dt

]
coll

�t =
[

df d

dt

]
coll

�t = (f loc − f MB)�t
τ

− �f MB︸ ︷︷ ︸
generation

+�f MB︸ ︷︷ ︸
change in equilibrium

− f d�t
τ︸ ︷︷ ︸

deletion

. (6.5)

This formulation is advantageous because in addition to not requiring reconstruction of f MB
t+�t

from its samples every timestep, it exploits analytical cancellation (between positive and negative
particles) by sampling only the net function (f loc − f MB)�t/τ − �f MB (as opposed to generating
particles from the distributions (f loc − f MB)�t/τ and −�f MB separately). The reduction in
complexity is immediately obvious, while the computational savings are considerable, provided
�f MB is chosen appropriately (see below for a discussion): in the special case of the linearized
BGK model, a choice of �f MB exists for which the cancellation is perfect ((f loc − f MB)�t/τ −
�f MB = 0) and therefore no particle generation is required; this could perhaps be expected from
the physical interpretation of the BGK model (the action of the collision operator is to move the
distribution towards local equilibrium) [50].

The above algorithm depends on an appropriate choice for �f MB which has the objective
of tracking f loc(t) using f MB

t . In [32,50], this was reliably achieved by requiring that �f MB be
chosen such that it absorbs the mass, momentum and energy change due to the action of the
particle-generation part of the collision integral; in other words, �f MB is determined from

∫
R3

�f MBφ d3c = �t
∫
R3

φ

([
df d

dt

]
coll

− f d

τ

)
d3c, (6.6)

where φ = {1, c, ||c||2}. The rationale for this requirement is as follows [32]: in problems where
the final distribution is of the Maxwell–Boltzmann type (say f̌ MB), if f d is constrained to have no
net mass, momentum and energy, it has to be zero since it is also constrained to be equal to the
difference of two Maxwell–Boltzmann distributions (f d = f − f MB = f̌ MB − f MB). In other words,

 on September 14, 2015http://rsta.royalsocietypublishing.org/Downloaded from 

http://rsta.royalsocietypublishing.org/


14

rsta.royalsocietypublishing.org
PhilTransRSocA371:20120182

......................................................

–0.5 0 0.5
–1.0

–0.8

–0.6

–0.4

–0.2

0

0.2

0.4

0.6

0.8

1.0

u
U

x
L

Figure 4. Transient (start-up) Couette flow of a BGK gas at Kn= 0.2/
√

π . The smooth lines show LVDSMC results at various
times. Thenoisy result denotes the steady-state solutionobtained viaDSMC simulationusing the same computational resources.
(Online version in colour.)

it is reasonable to expect that for problems where a local equilibrium solution exists, through this
formulation, the algorithm will be able to arrive at this solution (i.e. f MB = f̌ MB, f d = 0). Given
the above, one may expect that in general problems, this formulation drives f MB towards an
appropriate Maxwell–Boltzmann distribution so as to make f d small.

As stated above, in the case of the linearized BGK model this formulation reduces [50] to

[
df d

dt

]
coll

�t = �f MB︸ ︷︷ ︸
change in equilibrium

− f d�t
τ︸ ︷︷ ︸

deletion

(6.7)

with

�nMB = (nloc − nMB)
�t
τ

, (6.8)

�uMB = (uloc − uMB)
�t
τ

(6.9)

and �TMB = (Tloc − TMB)
�t
τ

, (6.10)

which is both simple and in line with the physical interpretation of the BGK model, namely
that the effect of the collision operator is to drive f MB towards f loc while eliminating
deviational particles.

The resulting simulation process is very efficient and can approach the Kn � 1 limit without
experiencing the stiffness problems associated with traditional molecular methods. This can be
illustrated in a number of ways. Figure 4 shows the time evolution of a start-up Couette flow
at Kn = 0.2/

√
π ; this essentially noise-free solution required a CPU time of 70 s (on one core of

a 3 GHz Core2 Quad). The steady-state flow field obtained via DSMC calculation at Ma = 0.02
(based on the wall velocity U) using the same CPU time is also shown for comparison.

Figure 5 shows the total number of samples required to resolve the flow velocity (to a fixed
level of statistical uncertainty) in the cell adjacent to the wall for a steady Couette flow. Here,
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Figure 5. Total number of samples required (in arbitrary units) to achieve afixed level of statistical error in the cell near awall for
steady-sate Couette flow simulations. Deviational approaches based on global and local equilibrium distributions are compared
for a range of Knudsen numbers.

the number of samples is defined as the number of particles in the simulation multiplied by
the number of independent statistical ensembles. The figure verifies that deviational simulations
based on the local equilibrium require increasingly fewer samples (an indication of computational
effort) than simulations based on a global equilibrium as the Kn → 0 limit is approached.

Note on the advection step: when f MB = f MB(r, c), (2.10) requires the deviational distribution
function to obey

∂f d

∂t
+ c · ∂f d

∂r
= −c · ∂f MB

∂r
(6.11)

during the advection substep. In the implementation discussed above, f MB is local to each cell and
thus varies in a piecewise constant fashion from one cell to the next. This leads to discontinuities of
this function at the boundaries between cells which leads to fluxes of deviational particles across
these boundaries. The solution to (6.11) can be written as a superposition of a free molecular
advection for the deviational particles (solution of the homogeneous equation) and a correction
term accounting for the contribution of the right-hand side. The latter, which can be written
analytically [32], can be implemented as a deviational-particle flux term at cell boundaries; more
details can be found in [32,50].

One disadvantage of this implementation is that particle generation at cell interfaces becomes
cumbersome in high-dimensional problems. An alternative formulation that may alleviate this
limitation would consist of a continuously variable f MB, whereby particle generation at cell
boundaries will be replaced by volumetric particle generation, which will reduce the complexity
associated with the dependence of the number of cell interfaces on dimensionality.

7. Discussion
Multiscale kinetic phenomena lend themselves naturally to algebraic decomposition of the
distribution function into a part treated by a particle method and a part that can be treated
using an appropriate limiting description, either numerical (§4) or analytical (§§5 and 6). These
approaches are very promising, and in some cases have already been used to solve problems that
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had been otherwise intractable without introducing approximations. We note that ideas similar in
spirit have been used [64,65] in the context of modelling plasma dynamics, namely the simulation
of gyrokinetic equations using particle-in-cell approaches.

We also note a recently proposed approach for reducing the statistical uncertainty of
DSMC simulations by coupling them with a deterministic solver of an extended Euler system
of equations through a moment-matching procedure. The rationale behind this formulation,
referred to as moment-guided Monte Carlo [66], is that constraining the lower moments of the
DSMC solution to match a significantly less noisy solution field injects information into the
computation that should reduce the statistical uncertainty of the overall solution. In the first
implementation [66], moment matching between the two simulations is achieved by a rather
arbitrary additive and multiplicative readjustment of particle velocities in DSMC until the desired
mean and variance is achieved. Applications to problems where the distribution function is not
known will in general require rigorous methods for matching the moments of the two simulations
without affecting the particle dynamics in the DSMC procedure.

Our discussion has mostly focused on the spatial aspects of the multiscale problem, primarily
because the majority of recent work was devoted to these challenges. Despite this, developing
methods that can span a wide range of temporal scales is equally important and challenging. In
the context of kinetic problems, algebraic decomposition (4.1) can be exploited for this purpose:
Cheremisin [67] developed a deterministic method for solving the Boltzmann equation which uses
such a decomposition to remove the stiffness associated with integrating the Boltzmann equation
in the limit Kn → 0. For particle methods, time-relaxed [43] integration schemes, briefly described
in §4, provide a promising new direction. These schemes remove the stiffness associated with time
integration of (2.11) in the Kn → 0 limit by emulating a number of desirable features of implicit
integration methods, namely stability for all timestep sizes, and the ability to approach the correct
limiting distribution in the limit of large timesteps. Although originally developed for the BGK
model and limited to first-order accuracy, higher order schemes for the VHS model have recently
been presented [45].

The ultimate challenge, both in the context of spatial and temporal scales, is the extension of
algebraic decomposition methods to more complex systems (e.g. dense fluids) where governing
equations for the distribution function reside in higher-dimensional spaces. Such systems are
more challenging because the governing equation is typically more complex, making it harder
to derive explicit expressions for the dynamics of the equilibrium part and the deviation
therefrom; moreover, although nearby equilibrium states are easy to identify based on physical
considerations, mathematical descriptions of those states will be significantly more complex.
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